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A function q4 is derived which is constant along the orthogonal trajectories of 
streamlines in two-dimensional flow. I n  irrotational flows, q4 reduces to the velocity 
potential. The pair of functions qi and @, where @ is the stream function, are used 
to define a coordinate system in rotational fluid flows. Tensor methods are used to 
transform the equations of motion of a turbulent fluid and the equations for second 
moments of turbulent fluctuations to this coordinate system. Explicit extra terms 
appear in the transformed equations embodying the effects of streamline curvature 
and mean flow acceleration. These extra terms are characterized by two lengthscales 
which arise naturally from the transformation: the local radius of curvature of the 
streamline and the ‘e-folding ’ distance of the mean streamwise velocity. 

1. Introduction 
The investigation of distorted shear flows, flows with streamline curvature and 

acceleration, leads to some of the most difficult problems of aerodynamics and 
engineering fluid mechanics. Recently, micrometeorologists have begun to  make 
systematic attacks on the related field of flow over ‘complex terrain’. A primary 
difficulty in every case is to choose a coordinate frame that simplifies both the 
correlation of measured data and the construction of predictive models. The 
rectangular Cartesian coordinate system is not usually appropriate since the physical 
interpretation of many quantities (for instance turbulent Reynolds stresses) becomes 
elusive when flow direction and coordinate direction do not coincide. To estimate 
changes in properties of the flow between two points on a streamline requires 
integration along a curve, generally a complicated operation, and, a t  least in 
micrometeorological field measurements, there are practical difficulties in aligning 
instruments accurately with some notional, externally imposed rectangular frame. 

The obvious recourse has been to curvilinear coordinates. If one coordinate 
direction can be chosen almost parallel to the mean flow direction, then extra terms 
arising from deviation of the mean flow from the coordinates may be small enough 
to be approximated in calculation schemes or ignored in interpretation of measure- 
ments. Bradshaw (1973) reviewed the coordinate systems appropriate to  different 
classes of distorted shear flows and suggested the use of ‘ ( 5 ,  n)’ coordinates for 
two-dimensional thin shear layers. The (5, n)-system was developed in detail by 
Howarth (1951) and is summarized in figure 1. 

The (8, n)-system has the disadvantage that,  except for simple rotating flows where 
R, the radius of curvature of the 8-coordinate lines, is not a function of distance along 
them (we include the ‘flat ’ case R = m),  the coordinate lines can be parallel to only 
one streamline. Elsewhere there will be mean velocity components and advection 
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FIGURE 1 .  The (s ,  n)-coordinate system. 

perpendicular to  the s-lines. This is not a serious limitation in thin shear layers, where 
the direction of the s-lines can always be chosen so that they correspond closely to 
the flow direction, but this is not possible in strongly distorted flows ; in this case the 
added complexity of the (s, n)-system brings with it no advantages. 

A more serious limitation may be the failure of the transform at the locus of the 
radii of curvature of the s-lines where the Jacobian of the transform becomes singular. 
For high curvature (such as may occur in flows around bluff bodies) this locus may 
be within the region ofinterest or domain of intended calculation. A final unsatisfactory 
feature of the system is the necessity of supplying the coordinate curves a priori, so 
that some of the global properties of the flow field must be known before the 
coordinates can be established. For attached boundary layers over slightly curved 
walls this is not really a problem since the surface provides an adequate descriptor; 
thin free shear layers are not so well provided. 

Most of these problems would disappear if streamlines could be used as coordinate 
lines. In irrotational flows, conformal mapping provides a streamline-orthogonal 
trajectory net, although ttie further step of transforming the equations of fluid flow 
into these coordinates is rarely taken. However, Lighthill (1956) did essentially this 
in his investigation of irrotational distortion of vorticity convected past a sphere, 
while Durbin & Hunt (1980) demonstrated the simplicity to be achieved when Hunt's 
rapid-distortion theory is developed in streamline coordinates. I n  rotational flows, 
unfortunately, the velocity potential 4 is not defined and the methods of conformal 
transformation are not available to us. This paper is an attempt to  remedy this 
deficiency. 

In  the sections that follow we first develop the rotational analogue of 4 and show 
how i t  may be combined with the stream function to form a useful coordinate system. 
In  $3, the formalism of tensor analysis will be employed to derive the equations of 
turbulent fluid motion in these coordinates, and in $4 the resulting first- and 
second-moment equations will be presented and discussed. Finally, in $5  we attempt 
to clarify some points that  might arise in formulating mathematical models in the 
coordinate system. 

2. The coordinate frame 

consists of the intersections of surfaces xi described in implicit form, i.e. 
A practical system of coordinate lines in a three-dimensional Euclidian space 

"i(Y1, yz, y3) = constant, (2.1) 
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where yi are the components of a position vector in a rectangular Cartesian reference 
framework. I n  order to obtain an orthogonal streamline coordinate system the xi must 
comprise two orthogonal stream surfaces and the surface normal to them. It can be 
shown (e.g. Piaggio 1958, p. 140) that such a normal congruence of surfaces only exists 
if the velocity field is complex lamellar, that  is, if v curl v = 0, where v is the velocity 
vector. Two-dimensional and axially symmetric flows form members of this class, and 
in the analysis that  follows we will restrict ourselves to the two-dimensional case. The 
three surfaces xi are therefore 

the plane of symmetry, 

the stream function, 

the surface orthogonal to the @ and x3 surfaces. 

x3 = y3 = constant, 

xz = @(yl,yz) = constant, 

x1 = $(yl, yz) = constant, 

The streamlines are the vector lines of the velocity field, or, since we are working 
in two dimensions, the lines @ = constant. The stream function 11. has the usual 
properties, viz 

(2.2) 

where V, and V, are the components of mean velocity in the directions y1 and yz 
respectively. 

The orthogonal trajectories to the streamlines are the lines $ = constant; their 
tangents are proportional to V@ so they must satisfy the 0.d.e. 

I/;dy,+ Kdy, = 0. (2.4) 

Since, as we have already pointed out, a solution to (2.4) exists in complex-lamellar 
flows, i t  is possible to find an integrating factor c(yl, yz) such that 

(Wl) dYl+ (CV,) dYz = 0 = d#J 
is an exact differential and 

A coordinate transform is completely defined by its metric, a quantity which contains 
only the partial differential coefficients of the coordinate surfaces xi with respect to 
the reference framework, in this case the Cartesian coordinates yi. We will consider 
these coefficients completely specified if they can be written in terms of Cartesian 
velocity components, and i t  is therefore clear from (2.3) and (2.6) that  the problem 
becomes one of specifying the integrating factor 5. 

This can be done most directly by recognizing that in two dimensions @ is the only 
non-zero component of the vector potential v = (0, 0,11.). The orthogonality condition 
can then be written: 

and a constraint on 5 is obtained by taking the curl: 

V $ = P x v ,  (2.7) 

(2.8) 0 = v x (P x v )  = (0, 0, VC' V@ + cy2@), 

or 
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Since IV@12 = V l +  Vi = Q 2  and V2$ = i3K/ay2-aa/ay, = -51, where L? is the 
vorticity (this definition of 51 is appropriate to a right-handed coordinate system, a 
convention we will retain throughout), (2.9) can be written 

(2.10) 

In irrotational flows 51 = 0, and t; is a constant, which without loss of generality 
may be set equal to 1 .  We see from (2.6) that q5 then becomes the familiar potential 
function of hydrodynamics. When the vorticity is non-zero 

(2.1 1 )  

and it is clear from (2.5) that we may choose C0 = 1.t 
In general, complete knowledge of the stream function is necessary to compute 5. 

It will become apparent in $3, however, that, when the streamlines are steady, we 
will only require knowledge of a In t;/:la$l+const, s,--const, the result (2.10). 

An alternative procedure can be adopted to obtain 6. If we apply the integrability 
condition 

to (2.6), we obtain a first-order p.d.e. for t; which can be solved by the method of 
characteristics, the characteristic curves being simply the orthogonal trajectories. 
This method is, in fact, more general than that described above, which relies on the 
particular relationship between vector potential and stream function in two- 
dimensional flow. It can be used, for example, in the analogous problem that arises 
in specifying the density of sea water in terms of its temperature and salinity. The 
density obeys Poisson’s equation, the right-hand side of which can only be expressed 
in explicit form by solving an orthogonality problem of the type considered here. 
Veronis (1972) and Mamayev (1973) discuss this problem, and proceed by replacing 
Poisson’s equation by Laplace’s equation. The analysis outlined here, however, allows 
an exact solution to be obtained. 

3. Transforming the turbulence equations into the new coordinate frame 
We employ the techniques of general tensor analysis to derive the equations in the 

new system. Readers unfamiliar with this formalism may skip this section and go 
directly to the discussion of the transformed equations in $4. 

A good textbook on this subject, which has a particular orientation towards fluid 
mechanics, is Aris (1962), while Bradshaw (1973, appendix I) presents a concise 
introduction to the use of general tensors in turbulent flows. In this section only, we 
employ the convention that superscripts denote contravariant tensor components 
and subscripts covariant components. The summation convention operates only 
between indices of different variance, hence if uj is a second-order tensor of mixed 
variance, uf is its trace, a scalar, while uii and uii are second-order doubly 
contravariant and covariant tensors respectively. On the occasions when a superscript 
denotes an exponent, the meaning will be obvious from the context. 

t The author would like to acknowledge one of his referees, who persuaded him to adopt this 
succinct derivation of g. 
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FIGURE 2. The (4, @, 2)-coordinate system. 

We denote the contravariant components of the new coordinates by xi ,  where 

21 = $4, x2 = $k, x3 = y3. (3.1) 

The coordinates are shown schematically in figure 2. 
The contravariant metric tensor g p q  is given by 

The xi system is orthogonal, so the covariant metric is 

(3.3) 

(3.4a) 

(3.46) 

It is clear from ( 3 . 4 ~ )  that, when Q = 0, J = 0, so that stagnation points and solid 
surfaces (where Q = 0 is ensured by the no-slip condition) are excluded from the 
manifold of the transform. This is the natural extension of the singularities that 
appear in conformal mappings at  stagnation points. 

The covariant derivative with respect to the ith contravariant coordinate is 
denoted by ,(. Hence if ui is a contravariant vector 
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where qe is the Christoffel symbol of the second kind and is defined by 

or 

The T s  for the present metric are set out in table 1.  

( 3 . 6 ~ )  

(3.6b) 

r:, = r!l = o 

TABLE 1, Christoffel symbols for the metric 

sij = 
0 0 1  

The coordinates xi do not all have dimensions of length, their dimensions being 
respectively L 2 / T ,  L 2 / T ,  L.  Vectors representing familiar quantities will therefore 
acquire unfamiliar dimensions when referred to these coordinates. For example, the 
velocity vector ui is the time derivate of the position vector of a point, that is, 
ui = dxi/dt, so that the contravariant components of the velocity vector ul ,  u2, u3 
have dimensions L2/T2, L2/T2, LIT respectively. Tensors referred to the xi system 
may be regarded as having their components aligned with a triad of orthogonal base 
vectors, the tangent vectors of the coordinate lines, which have dimensions TIL,  TIL,  
0 and which change both their magnitude and direction from place to place when 
compared with the reference Cartesian system. If we normalize the vectors of the basis 
by their local magnitudes, we acquire an orthonormal basis which merely varies in 
orientation from place to place. Tensors referred to this system have familiar 
dimensions and in fact correspond to  measurable quantities. For example, the 
contravariant components ui of the velocity vector would be replaced by the 
'physical' components' u( i ) ,  all of which have dimensions LIT and which are just 
the components we would measure in a rectangular Cartesian frame, locally tangent 
to the streamlines. To be of any practical use, the transformed equations must be 
expressed in terms of physical components. As we shall see below, rewriting the 
equations in terms of physical components has the further important consequence 
of removing singularities a t  stagnation points and solid surfaces. The reader is 
referred to appendix A for a more rigorous treatment of these points and to Truesdell 
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(1953) for an illuminating discussion of the relationship between tensors and their 
physical components. 

Once the metric tensor has been specified, the Navier-Stokes equations in the new 
system can be obtained by substituting the components of the metric into the 
invariant forms of these equations. In  the case of a turbulent flow, however, 
considerable labour is involved, particularly in deriving the equations of Reynolds 
stress components so that i t  was thought useful to present these equations here once 
and for all. A geometrical interpretation of some of the terms which appear in the 
transformed equations is also valuable and these will be the concerns of the rest of 
this paper. 

The procedure adopted in deriving the transformed equations follows Bradshaw 
(1973, appendix I). It is to 

( 1 )  write down the original equation in Cartesian form ; 
(2) rewrite the equation in general tensor form, replacing partial derivatives by 

(3) substitute for the covariant derivatives by (3.5); 
(4) recover physical components. 
The method is illustrated by the derivation of the streamwise mean momentum 

In Cartesian coordinates we have 

covariant derivatives and ensuring that all terms have the same variance; 

equation of a turbulent fluid flow. 

1 ap a 2 2  a v  S u p  -+ a v1 Jravl  
at ayj poaYl ay* ayjayj Po +u-+-. (3.7) 3- - - 

From here on, capital letters denote the ensemble-mean part of a fluctuating quantity 
and small letters the ~ deviation from the mean, so that Ui+ui is the total velocity 
vector. The overbar denotes the averaging operation. g1 is the component of the 
acceleration due to gravity in the yl direction, A p  the deviation of the density from 
the hydrostatic value po, and v the kinematic viscosity. Equation (3.7) is correct to 
the Boussinesq approximation, and Coriolis terms have been neglected (see, however, 
the appendix). Rewriting (3.7) in general tensor form: 

where Ui is the velocity in the xi coordinate system. 

u2 = u3 = 0, obtain 
We next substitute for the covariant derivatives by (3.5) and, noting that 

__ -Phj(uhuj) +viscous terms+-Ap. S1 (3.9) 
Po 

(We will not write the viscous terms out explicitly in this illustrative example. A large 
number of terms are involved and their expression does not clarify the method.) 

The relationship between the contravariant components of a tensor ui and its 
physical components u( i )  in an orthogonal coordinate system is simply 

. u( i )  

Sti 
uz = (no summation). (3.10) 

This relationship is given a physical basis in the appendix. 
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Substituting for the contravariant components in (3.9) after first replacing the 
Christoffel symbols by the values given in table 1 and invoking symmetry about the 
x3 = constant plane leads to  

+2u( l )u(2) -  :.[ Q+- a::J + 9 Ap + viscous terms. (3.11) 

We note that the integrating factor fl does not appear in the final form of the 
equation except in the third term on the left-hand side, which vanishes in steady flows. 
As the reader may easily verify, fl enters first through the Christoffel symbols when 
the covariant derivatives are expanded and again through components of the metric 
(scale factors) when contravariant components are replaced by their physical 
equivalents ((3.10)). When terms in fl with opposite sign resulting from these two 
causes are cancelled, fl remains only in the form 

However (a/ax2) In fl is simply @/a$) In flI9, z~ in the yi Cartesian coordinates, and, 
as we noted in (2.10), @/a$) In6 = Q / Q 2 .  The result is the disappearance of 6 from 
the transformed equations. 

The equation for the mean momentum balance normal to a streamline follows in 
the same way as (3.11): 

g(2) +-Ap+viscous terms. (3.12) 
P O  

Here Q2 = V;"+ V i ,  where V, and V, are the components of the mean velocity in the 
Cartesian coordinates yi. However, by definition ofa  physical component, U(l)* = Q 2 .  

The x1 coordinate is positive in the direction of increasing 9, which in turn is given 
by the expression 

$-do = (j[(5v,)aY1+(flr:)dY21. 

From (2.1 l) ,  fl is positive definite. Vl and V2 are positive in the direction of positive 
y1 and yz, so that, along a streamline, x1 increases in the direction of the mean velocity 
vector. In  recovering physical quantities through (3. lo), we choose the positive square 
root of gri so that the positive direction of the velocity vector defines the positive 
direction of ~ ( 1 ) .  It follows that U(1) is always positive and U(1) = &. The positive 
x(2) direction is in the direction of increasing stream function, and the specification 
of the handedness of the coordinate system is completed by the definition of the 
vorticity . 

The new coordinate system is defined by using the mean vorticity, Q. This means 
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that  any attempt to write 52 in terms of the transformed velocities leads either to 
an expression containing or to  the trivial result 0’ = a, where a’ is the form of 
52 in the xi system. IR is an invariant of the transform. If the velocity field is known 
in the xi coordinate system, knowledge of 52’ is necessary for the transformation back 
to Cartesian coordinates. 0’ in this case should be calculated from the expression 
52 = curl Ui, an expression which takes a particularly simple form in terms of the 
geometry of the flow field as we shall see below. We recognize that 52 is the third 
component of a contravariant vector, but, because of its special status as an invariant 
of the transform and because in two-dimensional flow it  is the only non-zero 
component of the mean vorticity vector, we have continued to write 52 rather than 
523. 

A useful result follows from transforming the incompressible continuity equation 
for mean velocities. I n  tensor form this is simply 

Yl+!Y2 = 0. (3.13) 

Replacing the covariant derivatives by (3.5) and then recovering physical quantities 
leads to 

(3.14) 

Inspection of (3.11) and (3.12) shows that some simplification has been achieved 
in the advective terms - advection now only occurs along a streamline, the z( 1) 
direction, a t  the expense of acquiring additional higher moment terms. These take 
the form of Reynolds stresses divided by lengthscales, where the lengthscales are 

(we have replaced Q by U(1)). The first lengthscale we denote by La and we can write 
either 

(3.15~) 

(3.15b) 

I n  other words, La is the ‘e-folding’ distance of the streamwise velocity and is the 
natural lengthscale of streamwise accelerations. A geometric interpretation of the 
second lengthscale follows from (3.12). The left-hand side of this equation is the total 
acceleration normal to  a streamline, or simply the centripetal acceleration of a fluid 
particle, and may be rewritten as U(1)2/R, where R is the local radius of curvature 
of the streamline. Comparing the two expressions for the acceleration we see that 

(3.16) 

It is apparent from (3.16) that the sign of R is not now a matter of convention 
but depends upon the sign of the vorticity. I n  fact, if the local centre of curvature 
lies in the direction of increasing x(2), R will be positive and vice versa. A change 
to  a left-handed coordinate system inverts the sign of 52 and consequently of R .  

Recovering physical components of vectors and tensors by application of (3.10) is 
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equivalent to normalizing the vector basis. The new orthonormal basis is the triad 
of vectors consisting of the unit tangent to the streamline (the x(1) direction), the 
unit principal normal (the 4 2 )  direction) and the unit binormal (the 4 3 )  direction). 
We can denote these three Cartesian vectors by g ( i ) .  The metric tensor of a transform 
can be constructed from the scalar products of the base vectors through the formula 

gi j  = g ( i )  * S ( j )  (3.17) 

(Aris 1962, p. 163). The metric of the complete transform, that is, the transformation 
into xi coordinates followed by the recovery of physical coordinates, is therefore 

(3.18) 

The Jacobian of the complete transform is 

and the singularities that  surrounded the initial transform domain have disappeared. 
A more physical feeling for this process may be obtained if it is appreciated that the 
original singularities correspond to points where the dimensional basis attains zero 
magnitude. Non-dimensionalizing the basis then has an obvious effect. 

I n  (3.4) we have included the term aU(l)/at, describing the temporal change of 
streamwise mean momentum, the mean, of course, being an ensemble mean. It should 
be apparent that  a change in U(1) must be accompanied by a change in the mean 
streamline pattern, that  is, in the coordinate frame. Referring velocities to a 
coordinate frame in general motion results in an extra ‘apparent ’ body force, the third 
term in (3.4), U(1) (a /a t )  In ([&). This term is analogous to the Coriolis ‘force’ that  
appears when the momentum equation is referred to coordinates undergoing rigid- body 
rotation, and indeed includes any such ‘Coriolis’ force. The form of this extra term, 
which has counterparts in the second-moment equations, is discussed in detail in the 
appendix, where we show that the Coriolis forces may be absorbed in this term. 

I n  almost all practical cases, however, i t  makes no sense to refer velocities to a 
fluctuating coordinate frame. An exception is the case of a wave propagating through 
a turbulent field, when it is desirable to  separate random turbulent fluctuations from 
coherent wave fluctuations, the latter being regarded as a part of the background 
flow (see e.g. Finnigan & Einaudi 1981). Even in this case, if the wave phase velocity 
ci is constant in space, the streamline pattern may be frozen by a Galilean 
transformation of axes yi = yi - cit before the transformation to curvilinear axes. If 
ci is a function of yi, however, or if the wave field takes the form of a wave ‘packet’, 
no single Galilean transform will freeze the streamlines. In  the second-moment 
equations that follow i t  should be recognized that a temporal change of Reynolds 
stresses will usually be accompanied by a change in U ( i ) .  

4. The equations of first and second moments of velocity 
Since the three coordinate directions are now asymmetric, we must write out the 

equations for each velocity or Reynolds-stress component separately. The equations 
are clarified by making a further (and final) change in notation. We replace x(i) by 
x, y, z ,  where x, y, z represent actual distances along the streamline, orthogonal 
trajectory and x3 lines respectively. Similarly, U+u,  V+v, W+ w are the mean plus 
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fluctuating velocity components in the x-, y-, z-directions. As mentioned in 5 3, these 
are velocities that would be measured by an anemometer in a Cartesian frame with 
its x-axis locally tangent to the streamline. gx and g, are the components of the 
acceleration due to gravity in the x-and y-directions, and gz 7 0, 

The mean momentum equations are 
_ _ _  au ah([') aa 1 ap au2 auv U P - V ~  2& T -+ U +'-= +- +--gx- 

at as poax ax ay L, a To at 

a2u a2u 2 au i a u  u 

1 ap am a 3  2 6  (2-2) T 
R posy ax ay L, R gyz +--+-- US -=  --_- 

P is the mean static pressure and T the mean deviation of the temperature from the 
adiabatic profile To. Henceforth we replace the buoyancy terms g ( i ) A p / p ,  by the 
expressions - g ( i )  TIT,, which are equivalent in the Boussinesq approximation and 
which have greater currency in turbulence work. 

The transport equations for the four non-zero components of Reynolds stress are 

i- __ : x T 3  

1 - -  
R + - (2uv2 -u3) + v uv2v + vv2u +- ~ 

L,ax m y  

- -  
;y(u2-J 1 a - uv---uv-2m 1 a -  -+- , (it: $2)1 (4.3) 

__  ___ --- 

where p and O are the fluctuations in pressure and temperature about P and T 
respectively, and V 2  = [a2/ax2 +a2/dy2 + a2/i3z2], 

9 Y L M  130 
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- 
1 - 1 . -  ~ 

+ - u w ~ + - v w ~  +2vwV2w. (4.6) R 
aw2 ua2  2 Z 5  
at ax Po ax 

-+-=---- 

The mean continuity equation, as already stated in (3.13), takes the trivial form 
au au 
ax ax 
_ _ _ -  - 0, 

but the continuity condition for the velocity fluctuations is 
au av aw u v 
ax ay a2 L, R 
-+-+ -----= 0 (4.7) 

The turbulent kinetic energy 1 / g  is one-half the trace of the Reynolds-stress tensor. 
Its transport equation can be obtained by summing (4.4), (4.5) and (4.6) or, more 
directly, by the procedure outlined in $3. Since 1/2q2 is a scalar and so invariant under 
a coordinate transformation, its first covariant derivative is simply the partial 
derivative ; as a result i t  may be derived from the Cartesian equation with considerably 
less labour than the equations for the individual stresses. It takes the form 

Written in this way the moment equations take the familiar Cartesian forms with 
simplified advection and the appearance of explicit extra terms in curvature and 
acceleration in the highest moments. A comparison between the transport equation 
for a Reynolds stress such as (4.3) and the equation for the same component in 
(s, n)-coordinates (see e.g. Castro & Bradshaw 1976, p. 286) emphasizes the 
simplicity of ($, @)-coordinates. The appearance of R and La in the equations allows 
a ready appreciation of the relative orders of magnitude of curvature, acceleration 
and shear effects. 

The scales appropriate to  mean velocity U and derivatives of mean moments along 
a streamline are Q and L, respectively. Gradients of mean moments in the y-direction 
have a lengthscale l,, where I, might be the shear-layer thickness 6 or, more generally, 
the 'mixing length', 2 = u,/Q. u* = luvl: is the friction velocity. Bradshaw's (1973) 
definition of a 'fairly thin shear layer' (FTSL) is roughly equivalent to  assuming that 
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1/R, IIL, < 0.1. With these definitions we see that the mean streamwise momentum 
equation expresses a balance between acceleration and pressure gradient along the 
streamline and the cross-stream gradient of shear stress. (In this and what follows, 
we ignore the effect of buoyancy forces so as not to complicate the argument; the 
manner of their inclusion is obvious. For the same reason we restrict the discussion 
to flows of sufficiently high Reynolds number that viscous effects are not significant 
in the momentum balance except very close to a smooth wall.) Curvature effects can 
only be significant if ( 2 M / R ) / ( & ~ / a y )  M 1 .  

Choosing I, = I, this condition may be rewritten 

(#g x 1, 

where 2U/RSZ is the ‘curvature Richardson number’ R,, a measure of the stability 
of a curved flow to small perturbations. Positive R, denotes a stable flow (see 
Bradshaw 1969). I n  turbulent boundary layers over very rough surfaces (u$/lUz)i can 
be as high as 0.3 (Raupach, Thom & Edwards 1980). I n  shear layers satisfying the 
FTSL constraints, however, IR,( rarely exceeds 0.5. The strongly curved shear layers 
investigated by Castro & Bradshaw (1976), Gillis & Johnston (1980) and Margolis 
& Lumley (1965) (representing free shear layers, boundary layers and channel flows) 
had values of S/R of 0.1, 0.09, 0.25 respectively, but their corresponding values of 
R, were only 0.3, 0.4, 0.3 (I have compared the stable cases). Their values of u i / U z  
were also very small, being at most 8.0 x lo3. I n  rough wall flows or atmospheric 
surface layers, the velocity gradient, aU/ay, which is the dominant component of SZ 
close to the surface, varies roughly as u*, so that the large values of (u,/U)2 observed 
over very rough surfaces are generally associated with R, values, diminished in 
proportion. It seems that only in the case of extreme distortion of a turbulent flow 
by a bluff body, where, locally, the FTSL approximations do not hold, would 
curvature effects become comparable to the ‘Bernoulli ’ terms (a/ax) (P+ lqU2) .  

Applying the same scaling arguments to (4.2) reveals that the balance between 
mean angular momentum U 2 / R ,  vertical pressure gradient applay and vertical 
divergence of normal stress (a/ay)G is modified by the curvature terms when the 
mean-square fluctuations in angular momentum become comparable to U2/R.  

All of the second-moment equations have a similar pattern, the kinetic-energy 
equation (4.8) being typical. The production term is a generalization of its familiar 
Cartesian form, normal stresses doing work against normal rates of strain, and shear 
stresses against the antisymmetric rates of strain. Explicit extra curvature and 
acceleration terms appear in the highest moments, the transport terms and in the 
viscous terms. The ratio of the extra curvature and acceleration terms to the leading 
terms in a FTSL are Ey/R and ly/La. These may in fact be considerable. In the 
experiment of Castro & Bradshaw with 1,/R = S/R M 0.05, (5/R),,, attains a value 
of 0.25[(a/ay)fiImax when R reaches its minimum value. 

Of particular interest are the direct effects of curvature on the pressure-gradient- 
velocity correlation terms. To see these we first write out the transformed version 
of the linearized contributions to the Poisson equation for fluctuating pressure. 
Neglecting viscosity, this is 

9-2 
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The left-hand side of (4.9) is the Laplacian in the present coordinates. The 
Green-function solution to  (4.9) is most simply obtained by transforming the solution 
obtained in Cartesian coordinates (see e.g. Crow 1968). Alternatively, a curvilinear 
Green function can be derived. Whichever course is chosen, the relative orders of 
magnitude of the various terms contributing to the final expression u6(ap/axj)  reduce 
to those of the integrand, the right-hand ~ side of (4.9). (This is not strictly true, since 
the magnitude of the correlations uiuj has an effect but not large enough to  affect 
our conclusions here.) 

In  a FTSL the leading term involves the mean shear, that is, 2(aU/ay) av/ax. 
Relative to this term the explicit curvature term, ( 2 / R )  (slay) Uu,  is of order l,/R 
while the explicit acceleration (2 /L , )uaU/ax  is only of order l,LZ/L;, where LZ is a 
typical integral lengthscale of the turbulence and we have assumed that LZ would be 
the lengthscale of variations in turbulent fluctuations. 

I n  a shear layer 9 x I ,  usually, so that (2 /L , )uaU/ax  is about an order of 
magnitude smaller than ( 2 / R )  (slay) Uu.  The ‘Cartesian ’ acceleration term 
2 ( a U / a x )  [au/ax-av/ay] is the same order as the explicit curvature term, if La x R. 
The extra term ( l / L , ) u a U / a x  then can be regarded as the difference between 
contributions to the pressure by acceleration along a streamline and along a fixed 
rectilinear axis, that  is, the effect of actual streamline divergence. 

5. Conclusion 
The equations of two-dimensional turbulent fluid motion have been transformed 

into a coordinate frame of streamlines and their orthogonal trajectories. Vectors and 
tensors in the transformed equation set are referred to an orthonormal vector basis, 
consisting of the tangent, principal normal and binormal of the streamline. In  the 
transformed equations advective terms are simplified a t  the expense of acquiring new 
terms in the highest moments. These involve two lengthscales - the local radius of 
curvature of the streamline and the ‘ e-folding ’ distance of streamwise acceleration - in 
a form which makes explicit the magnitude of these influences on the flow field. 

Some obvious simplifications in interpretation follow from the new equations : 
Reynolds shear stress puV, for example, resumes its role as the rate of turbulent 
momentum transfer in the cross-stream direction, an interpretation which must be 
abandoned when distorted flows are analysed in Cartesian coordinates. This and 
related properties have been exploited by Finnigan & Bradley (1983) in their 
experimental study of neutrally stratified flow past a shelter belt; the equations lent 
a welcome clarity to the analysis of a complicated situation. 

The suggestion was made in 8 1 that the new equations might simplify analytical 
or numerical models of complex flows. In  this context a few points can be usefully 
made. First, the removal of singularities from the transform domain by normalizing 
the vector basis allows boundary conditions to be specified on solid surfaces if so 
desired. 

Secondly, the mean vorticity is an invariant of the transform and appears in the 
final equations either as SZ or R, these two quantities being connected through (3.15). 
R can conveniently be regarded as an additional variable of the flow field. A closure 
problem (other than the familiar turbulent closure problem attendant on Reynolds 
averaging) is avoided since there exists only one component of mean velocity U,  and 
the equation for cross-stream mean momentum (4.2) is a ‘spare’ equation. 

When the streamline pattern is time-dependent, the integrating factor 5 appears 
explicitly in the equations. We can use the results of $3 to rewrite the expression (2.1 1 )  
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for 5 in the new coordinate system. In terms of physical quantities it becomes 

- 6 1  = -exp j2. 
5 0  lJ 

When the flow field is unsteady we are therefore faced with a set ofintegro-differentia1 
equations ; the question whether they will allow simpler specification of unsteady 
complex flows must await specific applications. 

The author is indebted to Drs R. S. Anderssen and P. R. de Hoog of CSIRO 
Division of Mathematics and Statistics for their help and constructive criticism. 

Appendix 
I n  53 we derive a term in the momentum equation (3.11) which arises from 

temporal change of the streamline pattern. This extra term O(1) @/at )  In (&?) has the 
form of an extra body force and appears because we have referred the velocities to 
a framework in general motion. In  this appendix we show that the term above (and 
the corresponding terms in the second-moment equations) have the correct form. 

Let ( i ,  j ,  k )  form an orthonormal vector basis, not a function of space or time. The 
three mutually perpendicular, dimensionless vectors i, j ,  k form the basis of a 
rectangular Cartesian coordinate frame. Hence we may write a vector a as 

a = aEi+aE j + a $ k ,  (A 1 )  

where a& are the components of a in the Cartesian frame. 

of linearly independent vectors g(l), g(2), g ( 3 ) ,  that  is, we could write 
We are a t  perfect liberty to describe a by referring i t  to any other basis or triplet 

= a'&') + a 2 g ( 2 )  + a3g(3) = &(i). (A 2) 

The g(i) may be functions of space or time, and need not be dimensionless; if they 
are not, then the components ui of a have dimensions 

I n  the transformation to  (+, $, x3}-coordinates, we have chosen g(%) by making them 
(implicitly) the tangent vectors to  the coordinate lines at any point. Since the 
coordinate lines are the intersections of the surfaces xi(y) = constant, y being the 
position vector of a point in the Cartesian system ( y  = yli+ y2j+y3k), the three 
tangent vectors may be written as 

and hence have dimensions : 

(A 5 )  
I' T 

k(l)I = z3 k ( 2 ) I  = E '  k ( 3 ) I  = 0. 

Now we know that the following equation of motion holds in the fixed Cartesian 
framework : 
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Let us rewrite the left-hand side, the total acceleration, using 

V = Pi+ VZj+ Pk = u l g ( , ) +  V g , , ,  + Wg, , ,  = Uig(i , ,  (A 7 )  
then 

In the expressions above we have replaced 

This is possible because the basis (iJ, k) is both orthonormal and not a function of 
space, so that ai aj - ak 

axi axi axi 
- 0. -=- 

(in a rectangular Cartesian framework, vectors are represented by their components 
without ambiguity !) 

Rearranging (A 8) we get : 

(Aris 1962, p. 164) and by interchanging the dummy indices 

However, the last term in the square brackets is just the covariant derivative defined 

It is clear that  the extra terms Ui(a/at)  lng(,) and ujrjk arise entirely from the 

Now i t  can be shown that 
variation in time and space of the base vectors g( i ) .  

and for orthogonal coordinate lines, g i j  = 0 (i + j), so that 

sij = g(i)  *&?(I) 

9ii = st)> 
(g(i)(  = (gig);  (no summation). (A 12) 

If we compare (A 11) and (A 12) with the definition of a physical component (3. lo), 
we see that the appearance of g ( i )  as a factor of the right-hand side of (A 1 1 )  ensures 
that the equation is dimensionally homogeneous ; i t  also serves to clarify the meaning 
of physical components. 
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The analysis outlined above works equally well for the right-hand side of (A 6)  and 
provides the justification for step (2) of the procedure of equation transformation 
outlined in $3. 

If the g(i) had been chosen to be a triad of orthonormal vectors, rotating with 
constant angular velocity 3' relative to (i, j ,  k), then cjk = 0, and the only extra term 
in (A 9) would be Ui(agg,,/at). For steady rotation, however, 

where the metric g P k  = diag (1,  1 ,  1 )  and the label (p) on g ( p )  can be regarded as a 
covariant index for the purposes of summation, and 

(A 14a) 

In  the notation of Cartesian tensors, where the distinction between co- and contra- 
variance is not made, (A 14) is simply 

(A 14b) 

The reader will recognize the right-hand side of (A 14 b )  as the familiar expression for 
the Coriolis force. 

Rather than combine the transformation to ($, @, x3)-coordinates with any 
rigid-body motion of the entire transform domain (that is, essentially, of the flow 
boundaries) into a single metric, it  is less confusing to split the transformation into 
two parts. First, we transform from fixed Cartesian axes to Cartesian axes in rigid 
motion relative to them. Extra body forces caused by Coriolis effects or rectilinear 
acceleration will then appear explicitly in a Cartesian equation of motion. Secondly, 
we transform this equation to streamline co-ordinates. 

Motion of the streamlines relative to  the fixed boundaries of the flow will then result 
in a term (in the momentum equation) 

F' = ut(a/at) In (gii)3 (no summation). (A 15) 

(a) i = 1, ( g . . ) l =  -. 
CQ'  

There are three possibilities : 1 

1 
( b )  i = 2, (gii)? = - 

Q ;  
(c) i = 3, (g i i ) t  = 1 .  

Consider the first case, i = 1 : 

but 

Obviously, in this case, knowledge of the global properties of the velocity field is 
necessary to compute (A 17). Physically, this is because the behaviour of a streamline 
a t  some point is determined by the total mass flow through the line connecting that 
point with a solid boundary. 
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